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Al: the New Electricity

“Al Is the new electricity.
Just as electricity transformed industry

after industry 100 years ago,
| think Al will do the same.”

Andrew Ng, Stanford, Baidu, Coursera






Devices, machines,
and things are becoming
more intelligent -
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—fficiency”? Models are Getting Larger!

IMAGE RECOGNITION SPEECH RECOGNITION
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Training Ops
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465 GFLOP
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~3.5% error

12,000 hrs of Data
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Baidu

Dally, NIPS’2016 workshop on Efficient Methods for Deep Neural Networks



The First Challenge: Model Size

Hard to distribute large models through over
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The Second Challenge: Speed

ResNet18:
ResNet50:
ResNet101:
ResNet152:

Error rate
10.76%

7.02%
6.21%
6.16%

Training time
2.5 days
5 days
1 week

1.5 weeks



The Third Challenge: Energy Etfticiency

AlphaGo: 1920 CPUs and 280 GPUs,
$3000 electric bill per game
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What’s next?

Algorithmic
advancements
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One order of magnitude
improvement in energy-
efficiency for
heterogeneous hardware
through the use of the
energy-optimized
programming model and
runtime.
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5x improvement in Mean
Time to Failure through
energy-efficient
software-based fault
tolerance.
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Size reduction of the

trusted computing base

by at least an order of
magnitude.

(%) CHALMERS

- UNIVERSITY OF TECHNOLOOY

Chalmers Tekniska
Hoegskola AB (CHALMERS)

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Technische Universitat
Dresden (TUD)

uni

(=) CHRISTMAN

INFORMATIONSTECHNIK + MEDIEN

Christmann
Informationstechnik +
Medien GmbH & Co. KG (CHR)

MAXELER

Maxeler Technologies

(MAXELER)

5x i1ncrease in FPGA
designer productivity
through the design of
novel features for
hardware design using
dataflow languages.
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Application and Hardware as

Algorithm

Hardware
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Open the Boxes!

Algorithm

Hardware

d Breaks the boundary between algorithm and hardware



Categorization of Efficient DNN Methods

Algorithm

Algorithms for
Efficient Inference

Algorithms for
Efficient Training

A 4

Inferencef

Training

Hardware for
Efficient Inference

Hardware for
Efficient Training

Hardware




Pruning Neural Networks

before pruning after pruning

pruning
synapses

e

pruning
neurons
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[Lecun et al. NIPS’89]
[Han et al. NIPS'15]



Pruning Neural Networks
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Pruning Neural Networks
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Weight Quantization

weights cluster index
(32 bit float) (2 bit uint)
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Ternary networks

6400

4800

Count

16007

32001
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Allow weights to be zero (i.e., -w, 0, w)
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2runing +
Together

Quantization: less bits per weight

Pruning: less number of weights
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Knowledge Distillation
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Model Distillation
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Efficient Deep l.earning in Embedded Systems




Solution

e 10x speed
e 10x less energy
e 10x less memory

Machine Intelligence




Hardware/Software codesign

“Energy will soon be one of the determining factors in Al. Either
companies will find it too expensive to run energy hungry ML
tools (such as deep learning) to power their Al engines, or the
heat dissipation in edge devices will be too high to be safe. The
next battleground in Al might well be a race for the most energy
efficient combination of hardware and algorithms.”

Max Welling ICML 2018
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