Efficient Deep Learning for Ubiquitous Al

Devdatt Dubhashi AI and Data Science, Chalmers Machine Intelligence Sweden

AI: the New Electricity

"Al is the new electricity. Just as electricity transformed industry after industry 100 years ago, I think Al will do the same."

Andrew Ng, Stanford, Baidu, Coursera

Why Efficiency? Models are Getting Larger!

Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

The First Challenge: Model Size

Hard to distribute large models through over-the-air update

App icon is in the public domain Phone image is licensed under CC-BY 2.0

Microsoft Excel will not download until you connect to Wi-Fi.

This image is licensed under CC-BY 2.0

The Second Challenge: Speed

	Error rate	Training time	
ResNet18:	10.76%	2.5 days	
ResNet50:	7.02%	5 days	
ResNet101:	6.21%	1 week	
ResNet152:	6.16%	1.5 weeks	

Training time benchmarked with fb.resnet.torch using four M40 GPUs

The Third Challenge: Energy Efficiency

AlphaGo: 1920 CPUs and 280 GPUs, **\$3000 electric bill** per game

What's next?

Barcelona Buerremonting Contro National de Superconsecución	CHALMERS UNIVERSITY OF TECHNOLOGY	CHRISTMANN DECOMMUNICATIONS TECHNIK + MEDIEN	Machine Intelligence Sweden
Barcelona Supercomputing Center (BSC)	Chalmers Tekniska Hoegskola AB (CHALMERS)	Christmann Informationstechnik + Medien GmbH & Co. KG (CHR)	Machine Intelligence Sweden AB (MIS)
HELMHOLTZ ZENTRUM FÜR INFEKTIONSFORSCHUNG		MAXELE ER	FECHNION Israel Institute of Technology
Helmholtz Centre for Infection Research (HZI)	Technische Universität Dresden (TUD)	Maxeler Technologies (MAXELER)	TECHNION, Israel Instin of Technology (TECHNIO)

ute

1		
	_	
	_	
	 	=
-		
		_

One order of magnitude improvement in energyefficiency for heterogeneous hardware through the use of the energy-optimized programming model and runtime. 5× improvement in Mean Time to Failure through energy-efficient software-based fault tolerance.

Size reduction of the trusted computing base by at least an order of magnitude. 5× increase in FPGA
designer productivity
through the design of
 novel features for
hardware design using
 dataflow languages.

Application and Hardware as Black Boxes

Open the Boxes!

Breaks the boundary between algorithm and hardware

Categorization of Efficient DNN Methods

Pruning Neural Networks

[Lecun et al. NIPS'89] [Han et al. NIPS'15]

Pruning Neural Networks

60 Million

10x less connections

[Han et al. NIPS'15]

Pruning Neural Networks

Weight Quantization

Ternary networks

Pruning + Learned Quantization Work Together

Knowledge Distillation

Model Distillation

Student model has much smaller model size!

Co-funded by the Horizon 2020 programme of the European Union

Efficient Deep Learning in Embedded Systems

Hardware/Software codesign

"Energy will soon be one of the determining factors in AI. Either companies will find it too expensive to run energy hungry ML tools (such as deep learning) to power their AI engines, or the heat dissipation in edge devices will be too high to be safe. The next battleground in AI might well be a race for the most energy efficient combination of hardware and algorithms."

Max Welling ICML 2018

References

• The slides have been prepared based on

- Stanford Deep Learning course, Lecture 15 <u>http://cs231n.stanford.edu/slides/</u> 2017/cs231n_2017_lecture15.pdf
- Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel S. Emer, Efficient Processing of Deep Neural Networks: A Tutorial and Survey. Proceedings of the IEEE 105(12): 2295-2329 (2017)
- and the slides at: <u>http://www.rle.mit.edu/eems/wp-content/uploads/2017/06/</u> <u>ISCA-2017-Hardware-Architectures-for-DNN-Tutorial.pdf</u>
- Song Han, Huizi Mao, William J. Dally, Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding, ICLR 2016.