SweDS 2018

The next Frontier: Distributed Deep Learning

😏 jim_dowling

"Methods that scale with computation are the future of AI"*

- Rich Sutton (Founding Father of Reinforcement Learning)

* <u>https://www.youtube.com/watch?v=EeMCEQa85tw</u>

Massive Increase in Compute for AI*

Model Parallelism

ImageNet

ImageNet Challenge

IM GENET

- 1,000 object classes (categories).
- Images:
 - 1.2 M train
 - 100k test.

[Image from https://www.slideshare.net/xavigiro/image-classification-on-imagenet-d114-2017-upc-deep-learning-for-computer-vision]

Improved Accuracy for ImageNet

Improvements in ImageNet – Accuracy

Facebook- <u>https://goo.gl/ERpJyr</u> Google-1: <u>https://goo.gl/EV7Xv1</u> Google-2:https://goo.gl/eidnyQ

Methods for Improving Model Accuracy

Faster Training of ImageNet

Clustered GPUs

[Image from https://www.matroid.com/scaledml/2018/jeff.pdf]

Reduction in Training Time

Table 1 : Training time and top-1 1-crop validation accuracy with ImageNet/ResNet-50							
	Batch Size	Processor	DL Library	Time	Accuracy		
He et al. [7]	256	Tesla P100 x8	Caffe	29 hours	75.3%		
Goyal et al. [1]	8K	Tesla P100 x256 Caffe2 1 hou		1 hour	76.3%		
Smith et al. [4]	8K→16K	full TPU Pod	TensorFlow	30 mins	76.1%		
Akiba et al. [5]	32K	Tesla P100 x1024	Chainer	15 mins	74.9%		
Jia et al. [6]	64K	Tesla P40 x2048	TensorFlow	6.6 mins	75.8%		
This work	34K→68K	Tesla V100 x2176	NNL	224 secs	75.03%		

300X in 3 years

[From https://arxiv.org/abs/1811.05233]

Scaling Efficiency

Network I/O Bound at 56 Gb/s

	Table 2 : GPU scaling	efficiency with	ImageNet/ResNet-	50 training
--	-----------------------	-----------------	------------------	-------------

	Processor	Interconnect	GPU scaling efficiency
Goyal et al. [1]	Tesla P100 x256	50Gbit Ethernet	~90%
Akiba et al. [5]	Tesla P100 x1024	Infiniband FDR	80%
Jia et al. [6]	Tesla P40 x2048	100Gbit Ethernet	87.9%
This work	Tesla V100 x1088	Infiniband EDR x2	91.62%

Not Network I/O Bound at 200 Gb/s

[From https://arxiv.org/abs/1811.05233]

ImageNet – Files/Sec Processed

Remove Bottleneck and Keep Scaling

All AI Roads Lead to Distribution

Data may be the new oil, but refined data is the fuel for AI

Machine Learning is a Data Distillery

Hopsworks: Data Distiller for ML

Frameworks for Distributed ML

- Google Cloud ML
- Microsoft Batch AI
- AWS Sagemaker
- On-Premise/Cloud Platforms
 - KubeFlow
 - Hopsworks

Challenges in Moving to "Distributed" Python

Classic Python Experience

"Cloud-Native" with KubeFlow

Python on Hopsworks

A Conda Environment per Project

Scalable Machine Learning Pipelines

Scalable ML Pipeline

2018 Logical Clocks AB. All Rights Reserved

Scalable ML Pipeline in Hopsworks

Spark for Distribution, HopsFS for State

Hops Small Data ML Pipeline

Project Teams (Data Engineers/Scientists)

Hops Big Data ML Pipeline

Project Teams (Data Engineers/Scientists)

Google TFX + Facets

 Jupyter Plugin
 Visualize data distributions

- Min/max/mean/media values for features
- Missing values in columns
- Test/train datasets

https://medium.com/tensorflow/introducing-tensorflow-data-validation-data-understanding-validation-and-monitoring-at-scale-d38e3952c2f0

Google Facets Dive

• Visualize the relationship between the data points across the different features of a dataset.

Data Ingestion

Data Ingestion and Google Facets

features = ["Age", "Occupation", "Sex", ..., "Country"]

```
h = hdfs.get_fs()
with h.open_file(hdfs.project_path() +
    "/TestJob/data/census/adult.data", "r") as trainFile:
    train_data =pd.read_csv(trainFile, names=features,
        sep=r'\s*,\s*', engine='python', na_values="?")
    test_data = ...
```

facets.overview(train_data, test_data)
facets.dive(test_data.to_json(orient='records'))

Now we want to pre-process some Images...

Small Data Preparation with tf.data API

def input_fn(batch_size):
 files = tf.data.Dataset.list_files(IMAGES_DIR)

def tfrecord_dataset(filename):
 return tf.data.TFRecordDataset(filename,
 num_parallel_reads=32, buffer_size=8*1024*1024)

Big Data Preparation with PySpark

tr = (ImageTransformer().setOutputCol("transformed")
 .resize(height = 200, width = 200)
 .crop(0, 0, height = 180, width = 180))
smallImages = tr.transform(images).select("transformed")

Output .tfrecords using TensorFlowOnSpark utility dfutil.saveAsTFRecords(smallImages, OUTPUT_DIR)

Estimator APIs in TensorFlow

Estimators log to the Distributed Filesystem

def distributed_training():

 $model = \dots$

optimizer =

model.compile(...)

def input_fn(): # return dataset

Data Acquisition HopsML CollectiveAllReduceStrategy with Keras Clean/Transform Data Feature Extraction #over-simplified code – see notebook Experimentation Training Test + Serve rc = tf.estimator.RunConfig('CollectiveAllReduceStrategy')

Add Tensorboard Support

- def distributed_training():
 from hops import tensorboard
 model_dir = tensorboard.logdir()
 def input_fn(): # return dataset
 model_
 - model = ...
 - optimizer = ...
 - model.compile(...)
 - rc = tf.estimator.RunConfig('CollectiveAllReduceStrategy')
 - keras_estimator = keras.model_to_estimator(model_dir)
 - tf.estimator.train_and_evaluate(keras_estimator, input_fn)

experiment.allreduce(distributed_training)

GPU Device Awareness

def distributed_training():
 from hops import devices
 def input_fn(): # return dataset
 model = ...
 optimizer = ...
 model.compile(...)
 est.RunConfig(num_gpus_per_worker=devices.get_num_gpus())
 keras_estimator = keras.model_to_estimator(...)
 tf.estimator.train and evaluate(keras estimator, input fn)

experiment.allreduce(distributed_training)

Experiment Versioning (.ipynb, conda, results)

- def distributed_training():
- def input_fn(): # return dataset
- model = ...
- optimizer = ...
- model.compile(...)
- rc = tf.estimator.RunConfig('CollectiveAllReduceStrategy')
- keras_estimator = keras.model_to_estimator(...)
- tf.estimator.train_and_evaluate(keras_estimator, input_fn)
- notebook = hdfs.project_path()+'/Jupyter/Experiment/inc.ipynb'
 experiment.allreduce(distributed_training, name='inception',
 description='A inception example with hidden layers',
 versioned_resources=[notebook])

Experiments/Versioning in Hopsworks

Нора	swork	ผ 🖗 🔳		Search			٩				admin@kth.se
Experiments Summary Showing TensorBoard for experiment application_1538115949913_0002_1											
		oard / Experiments s :h (e.g. status:200 A	-				Full screen	Share Clon	ie Edit 💵		O Last 15 minutes
Ø	Add a fil									03031440	
۱. L	Experi	ments summary									
ି ଅ		_id	user	name	start 🚽	finished	status	module	function	hyperparameter	1–1 of 1 < > metric
بر \$	Þ	application_15381159 49913_0002_1	Admin Admin	fashion mnist grid search	September 29th 2018, 16:22:34.296	September 29th 2018, 16:30:55.242	SUCCEEDED	experiment	grid_search	learning_rate=0.00 out=0.7	01.drop 0.832961797 714
*											1-1 of 1 < >
0											

Норы	works 🐼 🗮	Search Q admin@kth.se -
Experir Experir	nents Summary	Showing TensorBoard for experiment application_1538115949913_0002_1
	Single Document experiments#application	n_1538115949913_0002_1
0 1	Table JSON	
\odot	t _id	application_1538115949913_0002_1
8	t _index	demo_tensorflow_admin000_experiments
	# _score	1
ير ا	t _type	experiments
\$	t app_id	application_1538115949913_0002
	t cuda	9.0.176_384.81
	t description	Demonstration of running gridsearch hyperparameter optimization with fashion mnist
	t executors	1
	O finished	September 29th 2018, 16:30:55.242
	t function	grid_search
	t gpus_per_executor	0
	t hops	2.8.2.5-SNAPSHOT
	t hops_py	2.7.1
0	t hopsworks	0.6.0-SNAPSHOT
		• · · · · · · · · ·

Hopsworks 🐼 🗮	Search	Q		admin@kth.se 🗸
Experiments Summary		Showing TensorBoard for experir	nent application_	1538115949913_0002_1
TensorBoard scalars IMAGE	S GRAPHS PROJECTOR			<u>-</u> c 🌣 🧿
 Show data download links Ignore outliers in chart scaling 	${f Q}$ Filter tags (regular expressions supported)			
Tooltip sorting method: default	accuracy			1
Smoothing	0.800 0.600			
Horizontal Axis STEP RELATIVE WALL	0.400 0.200 0.00 0.00 20.00 40.00 60.00 80.00 100.0			
Runs				
Write a regex to filter runs TOGGLE ALL RUNS	Name Smoothed gloe_learning_rate=0.0001.dropout=0.45/eval 0.7280	Value Step Time Relative 0.7490 100.0 Sat Sep 29, 16:29:36 1m 5s		1
hdfs://10.0.2.15:8020/Projects/demo_tensorflow_ admin000/Experiments/application_ 1538115949913_0002/grid_search/run.1	 learning_rate=0.0001.dropout=0.7/eval 0.7282 learning_rate=0.0005.dropout=0.45/eval 0.7813 learning_rate=0.0005.dropout=0.7/eval 0.7949 	0.7475 100.0 Sat Sep 29, 16:30:54 1m 7s 0.8116 100.0 Sat Sep 29, 16:27:01 1m 1s 0.8122 100.0 Sat Sep 29, 16:28:21 1m 9s		

The Data Layer (Foundations)

Feeding Data to TensorFlow

Project Hydrogen: Barrier Execution mode in Spark: JIRA: SPARK-24374, SPARK-24723, SPARK-24579

Existing Filesystems are not good enough?

Uber on Petastorm:

"[Using files] is hard to implement at large scale, especially using modern distributed file systems such as <u>HDFS</u> and <u>S3</u> (these systems are typically optimized for fast reads of large chunks of data)."

https://eng.uber.com/petastorm/

PetaStorm: Read Parquet directly into TensorFlow

with Reader('hdfs://myhadoop/dataset.parquet') as reader:

- dataset = make_petastorm_dataset(reader)
- iterator = dataset.make_one_shot_iterator()
- tensor = iterator.get_next()
- with tf.Session() as sess:
 - sample = sess.run(tensor)
 print(sample.id)

 HDFS (and S3) are designed around large blocks (optimized to overcome slow random I/O on disks), while new NVMe hardware supports orders of magnitude faster random disk I/O.

Can we support faster random disk I/O with HDFS?
 Yes with HopsFS.

- •At Spotify's HDFS:
 - -33% of files < 64KB in size
 - -42% of operations are on files < 16KB in size
- Similar statistics from Yahoo!'s Hadoop clusters.

• **Solution**: Keep the same large block size, but store the small files in HopsFS' metdata layer.

*Size Matters: Improving the Performance of Small Files in Hadoop, Middleware 2018. Niazi et al

HopsFS – NVMe Performance for Small Files*

Throughput Dperations / Sec

- HopsFS is HDFS with Distributed Metadata
- Small files stored replicated in the metadata layer on NVMe disks*
 - Read 10s of 1000s of images/second from HopsFS

a. File Write Performance

*Size Matters: Improving the Performance of Small Files in Hadoop, Middleware 2018. Niazi et al

Model Serving on Kubernetes

← → ℃ ✿		(i) bbc1. sics.se :50251/hopsworks/#!/project/7/tfserving							••• 🛡 🏠 🔍 Search				
HopsWork.	\$	X I	Search				Q					admin@kth.se 🗸	
hiefes							-						
Jupyter	Jupyter			M	Iodel 🚯								
Zeppelin	Ø			Enable b	atching 🚯								
Jobs	0 °					Create Serving							
Kafka	%												
Model Serving	r		Model	Version	Batching	Status	Host	Port	Created	Actions			
Data Sets	►	II Stop	inception	1	true	Running	10.0.2.15	56778	Jan 16, 2018 5:32:08 PM	Logs			
	_	Run	cifar100	2	true	Created			Jan 16, 2018 5:32:00 PM	Delete	Change version		
Settings	æ	Run	cifar10	1	true	Created			Jan 16, 2018 5:31:53 PM	Delete	Changeversion		
Members	**												
Metadata Designer	Ø	inception											
Cluster Utilization: 13%													

Training-Serving Skew

- Monitor differences between performance during training and performance during serving.
 - Differences in how you process data in training vs serving.
 - Differences in the training data and live data for serving.
 - A feedback loop between your model and your algorithm.

•When to retrain?

- If you look at the input data and use **covariant shift** to see when it deviates significantly from the data that was used to train the model on.

Orchestrating ML Pipelines with Airflow

HopsML

- Experiments
 - Dist. Hyperparameter Optimization
 - Versioning of Models/Code/Resources
 - Visualization with Tensorboard
 - Distributed Training with checkpointing
- Feature Store
- Model Serving and Monitoring

Want to try Hopsworks?

1. Register for an account at: WWW.hops.site

Use an email address from a Swedish university or company.

•The future of Deep Learning is Distributed <u>https://www.oreilly.com/ideas/distributed-tensorflow</u>

 Hopsworks is a new Data Platform with first-class support for Python / Deep Learning / ML / Data Governance / GPUs

Hopsworks is open-source

*https://twitter.com/karpathy/status/972701240017633281

The Team

Active:

Jim Dowling, Seif Haridi, Gautier Berthou, Salman Niazi, Mahmoud Ismail, Theofilos Kakantousis, Ermias Gebremeskel, Antonios Kouzoupis, Alex Ormenisan, Fabio Buso, Robin Andersson, August Bonds.

Alumni:

Vasileios Giannokostas, Johan Svedlund Nordström, Rizvi Hasan, Paul Mälzer, Bram Leenders, Juan Roca, Misganu Dessalegn, K "Sri" Srijeyanthan, Jude D'Souza, Alberto Lorente, Andre Moré, Ali Gholami, Davis Jaunzems, Stig Viaene, Hooman Peiro, Evangelos Savvidis, Steffen Grohsschmiedt, Qi Qi, Gayana Chandrasekara, Nikolaos Stanogias, Daniel Bali, Ioannis Kerkinos, Peter Buechler, Pushparaj Motamari, Hamid Afzali, Wasif Malik, Lalith Suresh, Mariano Valles, Ying Lieu, Fanti Machmount Al Samisti, Braulio Grana, Adam Alpire, Zahin Azher Rashid, ArunaKumari Yedurupaka, Tobias Johansson, Roberto Bampi, Roshan Sedar.

