

INTELLIGENT DATA SAMPLING PROMOTES ACCELERATED MEDICAL IMAGING: SHARPER POSITRON EMISSION TOMOGRAPHY

K. Leffler^a, I. Häggström^b, J. Yu^a

^a Department of Mathematics and Mathematical Statistics, Umeå University, Sweden ^b Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York City

UMEÅ UNIVERSITY

《口》 《聞》 《臣》 《臣》 三臣

Sac

Positron Emission Tomography

Intelligent data sampling

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Positron Emission Tomography

Intelligent data sampling

<□▶ < □▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Positron Emission Tomography

Intelligent data sampling

<□▶ < □▶ < □▶ < □▶ < □▶ = □ の < ⊙

Positron Emission Tomography

Intelligent data sampling

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Inspiration

Figure: Left: Full standard 3D Magnetic Resonance Imaging headscan. Middle: Zoom of lower left area. Right: Structured compressed sensing approaches to resolution enhancing.¹

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ りゃぐ

¹Figures from "Undersampling improves fidelity of physical imaging and the benefits grow with resolution", B. Roman, R. Calderbank, B. Adcock D. Nietlispach, M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).

Compressed Sensing

Solve underdetermined linear systems.

```
[measurements] = [sensing matrix] \times [signal]
```


Two types of compressed sensing problems:

- I. Physical devices impose the sampling operator.
- II. Sensing mechanism offers freedom to design the sampling operator.

Compressed Sensing

Solve underdetermined linear systems.

```
[measurements] = [sensing matrix] \times [image]
```


Two types of compressed sensing problems:

- I. Physical devices impose the sampling operator.
- II. Sensing mechanism offers freedom to design the sampling operator.

3. How? Compressed Sensing

Compressed Sensing

Solve underdetermined linear systems.

Two types of compressed sensing problems:

- I. Physical devices impose the sampling operator.
- II. Sensing mechanism offers freedom to design the sampling operator.

イロト 不良 アイヨア イヨア コー ろくぐ

3. How? \

Wavelets

Wavelets

Wavelets

Wavelet transform of image: multiscale representation

- coarse scale low-resolution components
- fine scale high-resolution components

```
[image] = sum [coefficients] \times [wavelet functions]
```

Only few of the coefficients are important.

Sparse representation: keep only the important ones and set the rest to zero.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _____のへ⊙

イロト 不良 アイヨア イヨア コー ろくぐ

Simplified Example for Positron Emission Tomography

Unknown image x_0 .

Sampling equipment samples radon transform Rx_0 .

 x_0 may not be sparse itself, but its wavelet transform $\tilde{x} = \Phi_{dwt}x_0$ may be. Subsample $\Omega = \{1, ..., N\}$ with $m = |\Omega|$ and solve

3. How?

$$\min \|z\|_1 \quad \text{subject to} \quad P_{\Omega} R \Phi_{dwt}^{-1} z = P_{\Omega} R \Phi_{dwt}^{-1} \tilde{x}.$$

Notes:

- Subsampling scheme Ω.
- Minimum number of measurements m.
- Radon transform.
- Choice of wavelets.

3. How?

Possibilities

Possibilities

Figure: Left: Full standard 3D Magnetic Resonance Imaging headscan. Middle: Zoom of lower left area. Right: Structured compressed sensing approaches to resolution enhancing.²

²Figures from "Undersampling improves fidelity of physical imaging and the benefits grow with resolution", B. Roman, R. Calderbank, B. Adcock D. Nietlispach, M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).

Thanks for listening!

UMEÅ UNIVERSITY

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで