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2. Why?

Inspiration
Does Compressed Sensing Work?

Resolution enhancing experiment in MRI

Figure : Standard 3D MRI headscan. Scanning time = 15 min.

Experiment from ”Undersampling improves fidelity of physical imaging and the
benefits grow with resolution”, B. Roman, R. Calderbank, B. Adcock D. Nietlispach,
M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).
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Does Compressed Sensing Work?

Figure : Left: Standard full sampling. Right: The correct type of
compressed sensing approaches to resolution enhancing. Scanning time
for both = 15 min

Experiment from ”Undersampling improves fidelity of physical imaging and the
benefits grow with resolution”, B. Roman, R. Calderbank, B. Adcock D. Nietlispach,
M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).
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Figure: Left: Full standard 3D Magnetic Resonance Imaging headscan. Middle:
Zoom of lower left area. Right: Structured compressed sensing approaches to

resolution enhancing.1

1Figures from ”Undersampling improves fidelity of physical imaging and the
benefits grow with resolution”, B. Roman, R. Calderbank, B. Adcock D. Nietlispach,
M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).



3. How? Compressed Sensing

Compressed Sensing

Solve underdetermined linear systems.

[measurements] = [sensing matrix] × [signal]

Two types of compressed sensing problems:

I. Physical devices impose the sampling operator.

II. Sensing mechanism offers freedom to design the sampling operator.
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3. How? Compressed Sensing

Compressed Sensing

Solve underdetermined linear systems.

[measurements] = [sensing matrix] × [image]︸ ︷︷ ︸
sparse?

Two types of compressed sensing problems:

I. Physical devices impose the sampling operator.

II. Sensing mechanism offers freedom to design the sampling operator.



3. How? Wavelets

Wavelets
6 Conceptual Wavelets in Digital Signal Processing
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Haar Shannon or Sinc Daubechies 4 Daubechies 20

Gaussian or Spline Mexican Hat CoifletBiorthogonal

Figure 1.2–3 Examples of types of wavelets. Note 2 wavelets for the Biorthogonal. The Shan-
non, Gaussian, and Mexican Hat are “crude” wavelets that are defined by an explicit mathe-
matical expression (and whose wavelet filters are obtained from evaluating that expression at
specific points in time). The rest are estimations of a “continuous” wavelet built up from the
original filter points.

Jargon Alert: Shifting or sliding is often referred to as “translating”
in wavelet terminology.

1.3 The value of Transforms and Examples of
Everyday Use
Perhaps the easiest way to understand wavelet transforms is to first look at
some transforms and other concepts we are already familiar with.

The purpose of any transform is to make our job easier, not just to see if we
can do it. Suppose, for example, you were asked to quickly take the year
1999 and double it. Rather than do direct multiplication you would probably
do a home-made “millennial transform” in your head something like 1999 =
2000 – 1. Then after transforming you would multiply by 2 to obtain 4000 – 2.

Chapter 1 - Preview of Wavelets, Wavelet Filters, and Wavelet Transforms 13
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Figure 1.5–2 Actual FFT plot of the above pulse signal with the three comparison sinusoids.

1.6 Examples using the Continuous Wavelet
Transform
Wavelet transforms are exciting because they too are comparisons, but in-
stead of correlating with various stretched, constant frequency sinusoid
waves they use smaller or shorter waveforms (“wave–lets”) that can start
and stop. In other words, the fast Fourier transform relates the signal to si-
nusoids while the wavelet transforms relate signals to wavelets. In the real
world of digital computers, wavelet transforms relate our discrete, finite
(digital) signal to the discrete, finite, wavelet filters.

Fig. 1.6–1 shows us some of the constituent wavelets that have been shifted
and stretched (from the mother wavelet) that make up the signal. In other
words, we are correlating (comparing) the signal with these various shifted,
stretched wavelets. An actual wavelet transform compares many stretched
and shifted wavelets (“analysis wavelets”) to the original pulse rather than
just these few shown in Figure 1.6–1.
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Figure 1.6–1 The signal can be transformed into a number of wavelets of various stretching,
shifting, and magnitude. When added together these wavelets reconstruct the original signal.
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1Figures from ”Conceptual Wavelets in Digital Signal Processing”, D. Lee Fugal
(2009).



3. How? Wavelets

Wavelets

Wavelet transform of image: multiscale representation

• coarse scale – low-resolution components

• fine scale – high-resolution components

[image] = sum [coefficients] × [wavelet functions]

Only few of the coefficients are important.

Sparse representation: keep only the important ones and set the rest to zero.

HP

LP

. . .

HP

LP
HP

LP



3. How? Compressed Sensing with Wavelet Sparsification

Simplified Example for Positron Emission Tomography

Unknown image x0.

Sampling equipment samples radon transform Rx0.

x0 may not be sparse itself, but its wavelet transform x̃ = Φdwtx0 may be.

Subsample Ω = {1, . . . ,N} with m = |Ω| and solve

min‖z‖1 subject to PΩRΦ−1
dwtz = PΩRΦ−1

dwt x̃ .

Notes:

• Subsampling scheme Ω.

• Minimum number of measurements m.

• Radon transform.

• Choice of wavelets.



3. How? Possibilities

Possibilities
Does Compressed Sensing Work?

Resolution enhancing experiment in MRI

Figure : Standard 3D MRI headscan. Scanning time = 15 min.

Experiment from ”Undersampling improves fidelity of physical imaging and the
benefits grow with resolution”, B. Roman, R. Calderbank, B. Adcock D. Nietlispach,
M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).
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Figure : Left: Standard full sampling. Right: The correct type of
compressed sensing approaches to resolution enhancing. Scanning time
for both = 15 min

Experiment from ”Undersampling improves fidelity of physical imaging and the
benefits grow with resolution”, B. Roman, R. Calderbank, B. Adcock D. Nietlispach,
M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).
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Figure: Left: Full standard 3D Magnetic Resonance Imaging headscan. Middle:
Zoom of lower left area. Right: Structured compressed sensing approaches to

resolution enhancing.2

2Figures from ”Undersampling improves fidelity of physical imaging and the
benefits grow with resolution”, B. Roman, R. Calderbank, B. Adcock D. Nietlispach,
M. Bostock, I. Calvo-Almazn, M. Graves A. Hansen, PNAS (in revision).



4.

Thanks for listening!
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